

	D	iseño de e	especímenes
	For (almost		Description de la falla
	SE-01	"Conexión débil"	Plastificación de las alas de los T-stubs .
	SE-02	"Viga débil"	Formación de rótulas plásticas en la viga .
	SE-03	"Zona panel débil"	Plastificación de la zona panel .
	SE-04	"Falla balanceada"	Plastificación de la zona panel + formación de rótulas plásticas en la viga .
	SE: "Sistema Estr	uctural".	
/			

14

	Bibliografía			
	Ingeniería uwrditiskó oc cinit			
10. FEMA, 350. 2000. Recommended Seismic Design Criteria for New Steel Moment-Frame Buildings, Federal Emergency Management Agency, Washington DC, USA.				
	11. Girão Coelho A., Biljaard F. Gresnigt N., and Simoes Da Silva L. 2004. Experimental assessment of the behavior of bolted T-stub connections made up of welded plates. Journal of Constructional Steel Research 60: 269-311.			
	12. Herrera, R.A., Gomez, G., and Sarrazin, M. 2009. Design and behavior of welded T-stubs for DST connections. Proceedings of the 6th International Conference on Behaviour of Steel Structures in Seismic Areas, Philadelphia, Pennsylvania.			
	13. Núñez, A. "Diseño, fabricación y montaje de una instalación experimental para el ensayo de conexiones" Memoria para optar al Título de Ingeniero Civil, Universidad de Chile, Santiago, Chile, 2016.			
	14. Piluso V., Faella C., and Rizzano G. 2001b. Ultimate Behaviour of Bolted T-Stubs. II: Model Validation. Journal of Structural Engineering 127(6): 694-704.			
	15. RCSC. 2014. Specification for Structural Joints Using High-Strength Bolts. Research Council On Structural Connections, Chicago, IL, USA.			
	16. Smallidge, J. "Behavior of Bolted Beam-to-Column T-Stub Connections Under Cyclic Loading" Thesis to obtain the Degree Master of Science in Civil Engineering, Georgia Institute of Technology, Atlanta, GA, USA.			
	17. Swanson, J.A., and Leon, R.T. 2000. Bolted Steel Connections: Tests On T-Stub Components. Journal of Structural Engineering 126(1): 50-56.			
J	18. Tamboli, A.R. 2010. Handbook of Structural Steel Connection Design and Details. 2nd Edition. New York, NY: McGraw Hill.			